
Once the behavpy object is created, the print function will just show your data structure. If you want to see your
data and the metadata at once, use the built in method .display()

You can also get quick summary statistics of your dataset with .summary()

Visualising your data

first load your data and create a behavpy instance of it

df.display()

df.summary()

an example output of df.summary()

output:

behavpy table with:

 individuals 675

 metavariable 9

 variables 13

 measurements 3370075

add the argument detailed = True to get information per fly

df.summary(detailed = True)

https://bookstack.lab.gilest.ro/uploads/images/gallery/2022-11/image.png

Whilst summary statistics are good for a basic overview, visualising the variable of interest over time is usually a
lot more informative.

The first port of call when looking at time series data is to create a heatmap to see if there are any obvious
irregularities in your experiments.

output:

 data_points time_range

id

2019-08-02_14-21-23_021d6b|01 5756 86400 -> 431940

2019-08-02_14-21-23_021d6b|02 5481 86400 -> 431940

Be careful with the pandas method .groupby() as this will return a pandas object back and not a
behavpy object. Most other common pandas actions will return a behavpy object.

Visualising your data

Heatmaps

To create a heatmap all you need to write is one line of code!

All plot methods will return the figure, the usual etiquette is to save the variable as fig

fig = df.heatmap('moving') # enter as a string which ever numerical variable you want plotted

inside the brackets

Then all you need to do is the below to generate the figure

fig.show()

Plots over time

https://bookstack.lab.gilest.ro/uploads/images/gallery/2022-11/J3Himage.png

For an aggregate view of your variable of interest over time, use the .plot_overtime() method to visualise the
mean variable over your given time frame or split it into sub groups using the information in your metadata.

If wrapped is True each specimens data will be aggregated to one 24 day before being

aggregated as a whole. If you want to view each day seperately, keep wrapped False.

To achieve the smooth plot a moving average is applied, we found averaging over 30 minutes

gave the best results

So if you have your data in rows of 10 seconds you would want the avg_window to be 180 (the

default)

Here the data is rows of 60 seconds, so we only need 30

fig = df.plot_overtime(

variable = 'moving',

wrapped = True,

avg_window = 30

)

fig.show()

the plots will show the mean with 95% confidence intervals in a lighter colour around the

mean

You can seperate out your plots by your specimen labels in the metadata. Specify which

column you want fromn the metadata with facet_col and then specify which groups you want with

facet_args

What you enter for facet_args must be in a list and be exactly what is in that column in the

metadata

https://bookstack.lab.gilest.ro/uploads/images/gallery/2022-11/9R2image.png

The plots above look nice, but we often want to quantify the differences to prove what our eyes are telling us. The
method .plot_quantify() plots the mean and 95% CI of the specimens to give a strong visual indication of
group differences.

Don't like the label names in the column, rename the graphing labels with the facet_labels

parameter. This can only be done if you have a same length list for facet_arg. Also make sure

they are the same order

fig = df.plot_overtime(

variable = 'moving',

facet_col = 'species',

facet_arg = ['D.vir', 'D.ere', 'D.wil', 'D.sec', 'D.yak'],

facet_labels = ['D.virilis', 'D.erecta', 'D.willistoni', 'D.sechellia', 'D.yakuba']

)

fig.show()

if you're doing circadian experiments you can specify when night begins with the parameter

circadian_night to change the phase bars at the bottom. E.g. circadian_night = 18 for lights

off at ZT 18.

Quantifying sleep

Quantify parameters are near identical to .plot_overtime()

For all plotting methods in behavpy we can add grid lines to better view the data and you

can also add a title, see below for how

All quantifying plots sill return two objects, the first will be the plotly figure as normal

and the second a pandas dataframe with

the calculated avergages per specimen for you to perform statistics on. You can do this via

https://bookstack.lab.gilest.ro/uploads/images/gallery/2022-11/0y5image.png

If you want to perform normal statistical tests then it's best to use Scipy, a very common python package for
statistics with lots of online tutorial on how and when to use it. We'll run through a demonstration of one below.
Below you'll see an example table of the data from the plot above.

the common statistical package scipy or

we recommend a new package DABEST, that produces non p-value related statisics and

visualtion too.

We'll be looking to add DABEST into our ecosytem soon too!

fig, stats_df = df.plot_quantify(

variable = 'moving',

facet_col = 'species',

facet_arg = ['D.vir', 'D.ere', 'D.wil', 'D.sec', 'D.yak']

title = 'This is a plot for quantifying',

grids = True

)

fig.show()

Tip! You can have a facet_col argument and nothing for facet_args and the method will

automatically plot all groups within that column. Careful though as the order/colour might not

be preserved in similar but different plots

Performing Statistical tests

https://bookstack.lab.gilest.ro/uploads/images/gallery/2022-11/LLZimage.png

Given we don't know the distribution type of the data and that each group is independent we'll use a non-
parametric group test, the Kruskal-Wallis H-test (the non-parametric version of a one-way ANOVA).

First we need to import scipy stats

from scipy import stats

Next we need the data for each specimen in a numpy array

Here we iterate through the columns and send each column as a numpy array into a list

stat_list = []

for col in stats_df.columns.tolist():

 stat_list.append(stats_df[col].to_numpy())

Alternatively you can set each one as it's own variable

dv = stats_df['D.vir'].to_numpy()

de = stats_df['D.ere'].to_numpy()

... etc

Now we call the Kruskal function, remember to always have the nan_policy set as 'omit'

otherwise the output will be a NaN

If using the first method (the * unpacks the list)

stats.kruskal(*stat_list, nan_policy = 'omit')

If using the second

stats.kruskal(dv, de, ..., nan_policy = 'omit')

https://bookstack.lab.gilest.ro/uploads/images/gallery/2023-05/image.png

Often you'll want to compare a variable between the day and night, particularly total sleep. This variation of
.plot_quantify() will plot the mean and 96% CI of a variable for a user defined day and night.

output: KruskalResult(statistic=134.17956605297556, pvalue=4.970034343600611e-28)

The pvalue ss below 0.05 so we can say that not all the groups have the same distribution

Now we want to do some post hoc testing to find inter group significance

For that we need another package scikit_posthocs

import scikit_posthocs as sp

p_values = sp.posthoc_dunn(stat_list, p_adjust = 'holm')

print(p_values)

## output: 	1	2	3	4	5

1	1.000000e+00	2.467299e-01	0.000311	1.096731e-11	1.280937e-16

2	2.467299e-01	1.000000e+00	0.183924	1.779848e-05	7.958752e-08

3	3.106113e-04	1.839239e-01	1.000000	3.079278e-03	3.884385e-05

4	1.096731e-11	1.779848e-05	0.003079	1.000000e+00	4.063266e-01

5	1.280937e-16	7.958752e-08	0.000039	4.063266e-01	1.000000e+00

print(p_values > 0.05)

## output: 1	2	3	4	5

1	True	True	False	False	False

2	True	True	True	False	False

3	False	True	True	False	False

4	False	False	False	True	True

5	False	False	False	True	True

Quantify day and night

Quantify parameters are near identical to .plot_quantify() with the addtion of day_length

and lights_off which takes (in hours) how long the day is for the specimen (defaults 24) and

at what point within that day the lights turn off (night, defaults 12)

fig, stats = df.plot_day_night(

variable = 'asleep',

facet_col = 'species',

facet_arg = ['D.vir', 'D.ere', 'D.wil', 'D.sec', 'D.yak'],

facet_labels = ['D.virilis', 'D.erecta', 'D.willistoni', 'D.sechellia', 'D.yakuba'],

day_length = 24,

You may sometimes want to compare different but similar variables from your experiment, often comparing them
across different experimental groups. Use .plot_compare_variables() to compare up to 24 different variables
(we run out of colours after that...).

lights_off = 12

)

fig.show()

Compare variables

Like the others it takes the regualar arguments. However, rather than the variable parameter

it's variables, which takes a list of strings of the different columns you want to compare.

The final variable in the list will have it's own y-axis on the right-hand side, so save this

one for different scales.

The most often use of this with the ethoscope data is to compare micro movements to walking

movements to better understand the locomotion of the specimen, so lets look at that.

fig, stats = df.plot_compare_variables(

 variables = ['mirco', 'walk']

 facet_col = 'species',

 facet_arg = ['D.vir', 'D.ere', 'D.wil', 'D.sec', 'D.yak'],

 facet_labels = ['D.virilis', 'D.erecta', 'D.willistoni', 'D.sechellia', 'D.yakuba']

)

fig.show()

https://bookstack.lab.gilest.ro/uploads/images/gallery/2022-11/zz3image.png

Lets add the velocity of the specimen to see how it looks with different scales.

fig, stats = df.plot_compare_variables(

 variables = ['mirco', 'walk', 'mean_velocity']

 facet_col = 'species',

 facet_arg = ['D.vir', 'D.ere', 'D.wil', 'D.sec', 'D.yak', 'D.sims'],

 facet_labels = ['D.virilis', 'D.erecta', 'D.willistoni', 'D.sechellia', 'D.yakuba',

'D.Simulans'],

 # Add grids to the plot so we can better see how the plots align

 grids = True

)

fig.show()

https://bookstack.lab.gilest.ro/uploads/images/gallery/2022-11/oJhimage.png
https://bookstack.lab.gilest.ro/uploads/images/gallery/2022-11/oSDimage.png

As seen above all plot methods will produce a figure structure that you use .show() to generate the plot. To save
these plots all we need to do is place the fig object inside a behavpy function called etho.save_figure()

You can save your plots as PDFs, SVGs, JPEGs or PNGS. It's recommended you save it as either a pdf or svg
for the best quality and then the ability to alter then later.

You can also save the plot as a html file. Html files retain the interactive nature of the plotly plots. This comes in
most useful when using jupyter notebooks and you want to see your plot full screen, rather than just plotted under
the cell.

Head to the Overview Tutorial for interactive examples of some of these plots. It also shows you how to
edit the fig object after it's been generated if you wish to change things like axis titles and axis range.

Saving plots

simply have you returned fig as the argument alongside its save path and name to save

remember to change the file type at the end of path as you want it

you can set the width and height of the saved image with the parameters width and height

(this has no effect for .html files)

etho.save_figure(fig, './tutorial_fig.pdf', width = 1500, height = 1000)

or to get a better view of it and keep the interactability save it as a html file

etho.save_figure(fig, './tutorial_fig.html') # you can't change the height and width wehn

saved as a html

Revision #6
Created 23 November 2022 08:46:46 by Giorgio Gilestro
Updated 13 June 2023 11:58:45 by Laurence Blackhurst

